Developing and Using RootScripts with Root 2
Version 1.1

June 20, 2003

31
Introduction

2
Basic Concepts
3
3
Getting Started
4
3.1
Required Files
4
3.2
Type Declarations
4
3.3
Function Return Values
4
3.4
Miscellaneous Predeclarations
5
4
Rootscript Functions
7
4.1
RS_Fopen --- Open Script File for Writing
8
4.2
RS_Fclose -- Close Rootscript file
9
4.3
RS_USB_Reset --- Resets the USB device
10
4.4
RS_Suspend --- Suspend Device
11
4.5
RS_Resume --- Resume Device
12
4.6
RS_Power --- Control Power to USB Port
13
4.7
RS_VCC --- Set VCC
14
4.8
RS_VccMeasI --- Single Precision Current Measurement
15
4.9
RS_VccMeasI_DP --- Double Precision Current Measurement
16
4.10
RS_RootStatus --- Get Root1 Port Status
17
4.11
RS_RootConfig --- Configure Root-1
18
4.12
RS_DataPort --- Strobe Data Port
20
4.13
RS_DevRqst --- Issue Device Request
21
4.14
RS_DevRqstMan --- Issue Device Request Manually
23
4.15
RS_DevTransOut – issue a DevTrans Host-to-Device Request
25
4.16
RS_DevTransIn – issue a DevTrans Device-to-Host Request
27
4.17
RS_BlockDevTrans --- Start Block Transaction
28
4.18
RS_BlockDevTransStatus --- Get BlockTransaction Status
29
4.19
RS_StopBlockDevTrans --- Stop A Block Transaction
30
4.20
RS_Program--- Program Script File
31
4.21
RS_Run--- Run Script File
32
4.22
RS_Get_DLL_Version--- Get Version
33
4.23
RS_Message --- Send Message
34
4.24
RS_Response --- Set Response Mode
35
5
Rootscript Flow Control Functions
35
5.1
RS_CurIdx--- Get Current Index
37
5.2
RS_Goto--- Goto
39
5.3
RS_Call, RS_Return --- Function Call and Return
40
5.4
RS_Timer --- Set Timer
42
5.5
RS_If --- If
43
5.6
RS_Cond, RS_Check --- Check Conditionals and Branch
45
6
Another Example
47
7
Other Resources
47

Introduction

Root-2 can execute precompiled “scripts” (sequences of Root-2 commands) from its own local memory. The primary advantage of Script Mode is that it eliminates the communication delay of the serial port in processing commands, and allows Root-2 to interact with a device at much greater speeds than is otherwise possible.

Once fully debugged, scripts can be programmed into flash and executed when Root-2 powers up. Thus you can customize Root-2 to implement a stand-alone test unit to meet virtually any requirement.

Script commands must adhere to a specific command syntax required by Root-2. To relieve the user of the details of the specifics of this syntax and of constructing scripts themselves, RPM Systems provides a tool in the form of a MS Visual C/C++ Dynamically-Linked-Library called rootscript.dll. You write the script as a “C” program, compile and link it with rootscript.dll, and run the resulting executable; your application produces a script file which you can download to Root-2 via either the TapRoot application, or your own custom application. In fact, using TapRoot and a script created using rootscript.dll may be the quickest way to customize Root-2 to perform tests specific to your device (at the end of this document you will discover how to do just that -- for a high-speed BULK device).

Scripting is a powerful feature and can be used to generate simple or complex USB timing and traffic. It requires a thorough prior understanding of Root-2’s operational capabilities. You should be familiar with the document entitled Root-2 Interface Specification prior to reading this document – paying particular attention the description of Root-2’s script mode commands, in addition to Root-2’s standard command set.

1 Basic Concepts

To understand the basic concept behind creating a script using this technique, refer to the example script given in the Root-2 Interface Specification . This simple script sets VCC, applies power, and ends. To actually create this script using rootscript.dll, we perform the following steps:

1) Write the following “C” application called “vccscript”:

#include “stddefs.h”

#include “rootscript.h”

int main(void)

{

FILE *usb_stream;

UWORD ScriptBytes = 0;

// open script file

usb_stream = RS_Fopen(“simple.rs”) ;

RS_Program(usb_stream);

/* begin script */

ScriptBytes += RS_VCC(usb_stream,

100);

/* Set voltage = 5.0 */

ScriptBytes += RS_Power(usb_stream

,1);

/* Power On */

ScriptBytes += RS_End(usb_stream);
/* End script */

RS_Fclose(usb_stream);

}

2) compile and link the above application with the supplied library rootscript.lib in the link to resolve all calls to the DLL.

3) run the resulting executable vccscript.exe, which creates the file simple.rs as its output – and this is your rootscript. This script can be immediately downloaded to Root-2 via the TapRoot application or a custom app of your design.

2 Getting Started

2.1 Required Files

The following files are included with the rootscript distribution and are necessary for building a custom application:

Stddefs.h:

type declarations; required for calling application;

rootscript.h:
constant declarations and function prototypes; required for calling application;

rootscript.lib:
corresponding library file for rootscript.dll; required in link with

Calling application.

2.2 Type Declarations

rootscript function interface prototypes use the following type declarations for byte, word, and long data sizes:

typedef unsigned short
UWORD;

typedef unsigned char
UBYTE;

typedef unsigned long
ULONG;

These data types are declared in the file “stddefs.h”. Any source file, which uses routines in rootscript.dll, should include this file.

2.3 Function Return Values

All rootscript function calls return a UWORD that represents the number of bytes generated (added to the length of the script file) as a result of the function invocation. This is available as a convenience – with it you can accumulate the total length of the script file – but it is not required.

Here is an example of a rootscript call to turn on power:

//power the device

ScriptBytes += RS_Power(usb_stream,POWER_ON);

2.4 Miscellaneous Predeclarations

The following declarations are also included in rootscript.h for your convenience, and are referenced in the following sections:

//useful declarations for valid values for Root-1 Commands

//predeclarations for R1_RootConfig command

#define ROOT1_MODE

0

#define AUTO_MODE

1

#define MANUAL_MODE

0

#define ROOT1_TRIGGER

1

#define TRIGGERS_DISABLED

0

#define TRIGGER1_ENABLED

1

#define TRIGGER2_ENABLED

2

#define ROOT1_AUTORECOVERY

2

#define AUTORECOVERY_ENABLED
1

#define AUTORECOVERY_DISABLED
2

#define ROOT1_LED_INDICATORS 3

#define ENABLE_LED_INDICATORS 1

#define DISABLE_LED_INDICATORS 0

#define ROOT1_PUSHBUTTONS

4

#define ENABLE_PUSHBUTTONS

1

#define DISABLE_PUSHBUTTONS

0

#define ROOT1_BAUD

5

//Baud set according to following table:

#define ROOT1_BAUD_2400

0 //-- 2400

#define ROOT1_BAUD_9600

1 // -- 9600

#define ROOT1_BAUD_19200

2 // -- 19200

#define ROOT1_BAUD_38400

3 // -- 38400

#define ROOT1_BAUD_57600

4 // -- 57600

#define ROOT1_BAUD_115200

5 // -- 115200

#define ROOT1_BAUD_230400

6 // -- 230400

#define ROOT1_BAUD_460800

7 // -- 460800

#define ROOT1_CONNECT_SPEED_CONTROL
6

#define INHIBIT_HS

1

#define ALLOW_HS

0

//predeclarations for R1_Power

#define POWER_OFF

0

#define POWER_ON

1

//useful PID declarations for R1_DevRqst, R1_DevTransXXX

#define OUT_PID

0x1

#define ACK_PID

0x2

#define DATA0_PID

0x3

#define PING_PID

0x4

#define NYET_PID

0x6

#define DATA2_PID

0x7

#define IN_PID

0x9

#define NAK_PID

0xa

#define DATA1_PID

0xB

#define SETUP_PID

0xD

#define STALL_PID

0xe

#define MDATA_PID

0xf

// DevTrans Control Byte Defines

//bit 0 is reserved!

#define DT_LOW_SPEED 0x0000 //perform transaction at low speed

#define DT_FULL_SPEED
0x0002 //perform transaction at full speed

#define DT_HIGH_SPEED
0x0008 //perform transaction at high speed

#define DT_ISOCH

0x0004 //perform isochronous transaction

#define DT_USE_ALT_BUFFER 0x0010 //use alternate buffer

#define DT_IMMED

0x0080 //issue transaction immediately

//these can only be used with block dev trans command

#define DT_STOP_ON_NAK
0x0200 //stop transaction when device NAKs

//used in conjunction with response from R1_RootStatus command

#define ROOTSTATUS_CONNECT_MASK

 0x43

#define ROOTSTATUS_POWER_MASK

4

#define ROOTSTATUS_SUSPEND_MASK

8

#define ROOTSTATUS_ENABLED_MASK

0x10

#define ROOTSTATUS_AUTORECOVERY_MASK

0x20

#define ROOTSTATUS_NOT_CONNECTED

0

#define ROOTSTATUS_FULL_SPEED_CONNECT

2

#define ROOTSTATUS_LOW_SPEED_CONNECT

1

#define ROOTSTATUS_HIGH_SPEED_CONNECT

0x40

#define ROOTSTATUS_CONNECTED

0x43

//DevRqst predefines

//DevRqst predefines

#define DR_PACKETSIZE_8

0

#define DR_PACKETSIZE_16
1

#define DR_PACKETSIZE_32
2

#define DR_PACKETSIZE_64
3

#define DR_HIGH_SPEED

2

#define DR_FULL_SPEED

1

#define DR_LOW_SPEED

0

3 Rootscript Functions

With the exception of the file maintenance commands, there is a one-to-one correspondence with the Rootscript commands documented in the following section, and Root-1 commands as defined in the Root-2 Interface Specification. Refer to the interface spec for additional details on each command.

RS_Fopen --- Open Script File for Writing

Synopsis

#include “stddefs.h”

#include “rootscript.h”

FILE * RS_FOpen(char * filepath);

Description

RS_FOpen() opens a rootscript output file.

filepath:

file path and name of file

Returns

0:

 error occurred opening file

File Handle:

 file opened successfully.

(The file handle is necessary in subsequent rootscript calls.)

Example:

{

FILE *usb_stream;

//..

if (!(usb_stream = RS_Fopen ("test.rs")))

{

printf("error opening rootscript file\r\n");

}

}

RS_Fclose -- Close Rootscript file

Synopsis

#include “stddefs.h”

#include “rootscript.h”

void RS_Fclose (FILE * filehandle);

Description

RS_Fclose() closes the file associated with filehandle.

Returns

Nothing.

Example:

{

FILE *usb_stream;

//..

RS_Fclose(usb_stream);

printf("rootscript file closed \r\n");

}

RS_USB_Reset --- Resets the USB device

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_USB_Reset(FILE *filehandle);

Description

RS_USB_Reset() appends a USB_Reset command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle.

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_USB_Reset(usb_stream);
// Reset device

}

RS_Suspend --- Suspend Device

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Suspend(file *filehandle);

Description

RS_Suspend() appends a Global Suspend command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle.

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_Suspend(usb_stream);
//suspend device

}

RS_Resume --- Resume Device

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Resume(file *filehandle);

Description

RS_Resume appends a Global Resume command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle.

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_Resume(usb_stream);
//resume device

}

RS_Power --- Control Power to USB Port

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Power(file *filehandle ,UBYTE On);

Description

RS_Power()appends a Global Resume command to the rootscript file specified by “filehandle”.

If “On” is non-zero, power is applied to the port, otherwise it is turned off.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_Power(usb_stream,POWER_ON);

}

RS_VCC --- Set VCC

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_VCC(file *filehandle ,UBYTE Value);

Description

RS_VCC() appends a Set VCC command to the rootscript file specified by “filehandle”.

The relationship between the parameter “Value” and the level of VCC is given in volts by:

VCC = 4 + Value/100

Thus, a value of 100 would give a VCC of 5 volts.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

UWORD ScriptBytes;

FILE *usb_stream;

//..

//..

ScriptBytes += RS_VCC(usb_stream,100);

}

RS_VccMeasI --- Single Precision Current Measurement

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_VccMeasI(file *filehandle);

Description

RS_VccMeasI() appends a “Measure Root Port ICC” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_VccMeasI(usb_stream);

}

RS_VccMeasI_DP --- Double Precision Current Measurement

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_VccMeasI_DP(file *filehandle);

Description

RS_VccMeasI_DP() appends a “Measure Root Port ICC_DP” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_VccMeasI_DP(usb_stream);

}

RS_RootStatus --- Get Root1 Port Status
Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_RootStatus(file *filehandle);

Description

RS_RootStatus() appends a “Get_Rootstatus” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_RootStatus(usb_stream);

}

RS_RootConfig --- Configure Root-1

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_RootConfig(file *filehandle ,UBYTE Parameter,UBYTE Value);

Description

RS_RootConfig() appends a “Root Config” command to the rootscript file specified by “filehandle”.

The valid parameters and their allowable values are:

Parameter

Value(s)

ROOT1_MODE

MANUAL_MODE, AUTO_MODE

ROOT1_TRIGGER

TRIGGERS_DISABLED,

TRIGGER1_ENABLED,

TRIGGER2_ENABLED,

(TRIGGER1_ENABLED | TRIGGER2_ENABLED)

ROOT1_AUTORECOVERY(2)
AUTORECOVERY_DISABLED,

AUTORECOVERY_ENABLED

ROOT1_LED_INDICATORS
ENABLE_LED_INDICATORS,

DISABLE_LED_INDICATORS

ROOT1_PUSHBUTTONS

ENABLE_PUSHBUTTONS,DISABLE_PUSHBUTTONS

ROOT1_BAUD

ROOT1_BAUD_2400,ROOT1_BAUD_9600,

ROOT1_BAUD_19200, ROOT1_BAUD_38400,

ROOT1_BAUD_57600, ROOT1_BAUD_115200,

ROOT1_BAUD_230400 ROOT1_BAUD_460800

ROOT1_CONNECT_SPEED_CONTROL

INHIBIT_HS,ALLOW_HS

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

//configure root1 for manual mode

ScriptBytes += RS_RootConfig(usb_stream,ROOT1_MODE,MANUAL_MODE);

//configure root1 for auto mode

ScriptBytes += RS_RootConfig(usb_stream,ROOT1_MODE,AUTO_MODE);

//disable both triggers

ScriptBytes += RS_RootConfig(usb_stream,ROOT1_TRIGGER,

TRIGGERS_DISABLED);

//enable both triggers

ScriptBytes += RS_RootConfig(usb_stream,ROOT1_TRIGGER,

TRIGGERS_ENABLED | TRIGGER2_ENABLED);

}

RS_DataPort --- Strobe Data Port

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_DataPort(file *filehandle ,UBYTE data);

Description

RS_DataPort() appends a DataPort command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

//toggle the dataport output

ScriptBytes += RS_DataPort(usb_stream, 0xff);

ScriptBytes += RS_DataPort(usb_stream, 0x00);

}

RS_DevRqst --- Issue Device Request

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_DevRqst(file *filehandle ,UBYTE Address, UBYTE *DataBuff,UWORD DataLen);
Description

RS_DevRqst() appends a DevRqst command to the rootscript file specified by “filehandle”.

The arguments are as follows:

Filehandle:
handle of rootscript file

Address:
address of the device

DataBuff:
pointer to data to send to the device

DataLen:
size of data pointed to by “data”, in bytes

Entire USB SETUP transactions – the SETUP through STATUS phases -- can be issued to a downstream device using a single RS_DevRqst command. RS_DevRqst commands can be issued to devices configured by the Root-1 in automatic mode. You MUST match the address of the targeted device to the address assigned by Root-1 when it configured the device. The Root-1 will use this address to match the speed and packet size of the device in question when it issues the RS_DevRqst command (see RS_DevRqstMan() to issue device requests with explicit packet size and speed settings).

The data in DataBuff should minimally contain an 8-byte SETUP command – and it follows that DataLen should not be less than 8. In the case of a host-to-device directional transfer (OUT transactions following the SETUP phase), the additional data to be sent in OUT transactions should be concatenated to the SETUP command in DataBuff and the additional length of this data accounted for in DataLen.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

//here’s a SETUP command to get the configuration descriptor.

//Note that if the direction of the SETUP was HOST to DEVICE, the

//additional data to be sent after the SETUP would be defined

//after the initial 8 bytes in the array below.

UBYTE get_config[8] = {0x80,0x06,0x00,0x01,0x00,0x00,0x12,0x00};

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

//call RS_DevRqst to get the config descriptor.

//This example assumes that prior to this code fragment, a device

//has been plugged into the Root-1 and was configured in

//Automatic mode. Therefore its address will be 2 (Root1 always

//assigns the root downstream device an address of 2)

//

ScriptBytes += RS_DevRqst(usb_stream,2,get_config,

sizeof(get_config));

}

RS_DevRqstMan --- Issue Device Request Manually

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_DevRqstMan(file *filehandle ,UBYTE Address, UBYTE Speed,

 UBYTE Packetsize, UBYTE *DataBuff, UWORD DataLen);
Description

RS_DevRqstMan() appends a DevRqst command to the rootscript file specified by “filehandle” - with parameters for setting device speed and Packetsize explicitly:

Address:
address of the device

Speed:

speed of transaction: 1 = full speed, 0 = low speed

Packetsize:
max packet size to use in request: 8,16,32, or 64 bytes (encoded)

DataBuff:
pointer to data to send to the device

DataLen:
size of data pointed to by “data”, in bytes

RS_DevRqstMan is identical to RS_DevRqst, except that it allows the speed and packet size of the request to be explicitly set prior to the transaction. You can use this command to “manually” issue device requests to devices that have not been automatically configured by Root-1. Typically this command is used when Root-1 is running in manual mode, to communicate with devices when more control or customization over the setup process is desired.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

//here is an example of how to set the address of a device in

//manual mode, using RS_DevRqstMan.

//define a command to set the address to 0x55

UBYTE set_address[8] = {0,5,0x55,0,0,0,0,0};

//call RS_DevRqstMan to set the address

ScriptBytes += RS_DevRqstMan(usb_stream, 0, DR_FULL_SPEED,

PACKETSIZE_8, set_address,sizeof(set_address));

}

}

RS_DevTransOut – issue a DevTrans Host-to-Device Request

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_DevTransOut(file *filehandle ,UBYTE Address, UBYTE Endpoint, UBYTE pid, UBYTE Control, UBYTE DataPID, UBYTE* DataBuff,

UWORD DataLen);

Description

RS_DevTransOut() appends a “DevTrans Out ” command to the rootscript file specified by “filehandle” – that is, a single “DevTrans” command with a host-to-device directional data transfer.

Address:
address of the device

Endpoint:
endpoint of the transfer

Pid:

PID

Control:
Control Byte for the transfer: can be the exclusive or of the following:

{DT_LOW_SPEED, DT_FULL_SPEED, DT_HIGH_SPEED};

DT_ISOCH

//perform isochronous transaction

DT_USE_ALT_BUFFER 0x0010

//use alternate buffer

DT_IMMED

//issue transaction immediately

DataPID:
Data PID

DataBuff:
pointer to data to send to the device

DataLen:
size of data pointed to by “DataBuff”, in bytes

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

UBYTE set_address[8] = {0,5,2,0,0,0,0,0};

ScriptBytes += RS_DevTransOut(

usb_stream,

//filehandle

0,

//address = 0

0,

//endpoint = 0

SETUP_PID,

//SETUP pid

DT_FULLSPEED,
//full-speed transaction

DATA0_PID,
//data0 pid for data portion of //transaction

set_address,
//pointer to SET_ADDRESS command

sizeof(set_address)//size of command

);

}

RS_DevTransIn – issue a DevTrans Device-to-Host Request

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_DevTransIn(file *filehandle ,UBYTE Address, UBYTE Endpoint, UBYTE pid,
UBYTE Control);
Description

RS_DevTransIn() appends a “DevTrans In” command to the rootscript file specified by “filehandle”-- that is, a “DevTrans” command with a device-to-host directional data transfer.

Address:
address of the device

Endpoint:
endpoint of the transfer

Pid:

PID

Control:
Control Byte for the transfer; can be the exclusive or of the following:

Bit definitions:

{DT_LOW_SPEED, DT_FULL_SPEED, DT_HIGH_SPEED};

DT_ISOCH

//perform isochronous transaction

DT_USE_ALT_BUFFER 0x0010

//use alternate buffer

DT_IMMED

//issue transaction immediately

//without waiting for sof

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_DevTransIn(

usb_stream,

//file handle

2,

//device address = 2

0,

//endpoint 0

IN_PID,

//IN pid

DT_FULLSPEED

//full speed transaction

);

}

RS_BlockDevTrans --- Start Block Transaction

RS_BlockDevTrans(FILE *fileptr,BLOCK_DEV_TRANS_STRUCT *p);

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_BlockDevTrans(FILE *fileptr,BLOCK_DEV_TRANS_STRUCT *p);

Description

RS_BlockDevTrans () appends a “Start Block Transaciton” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

BLOCK_DEV_TRANS_STRUCT testH;

//..

//..

//initialize our test structure

testH = default_block_dev_transH;

ScriptBytes += RS_BlockDevTrans (usb_stream,&testH);

}

RS_BlockDevTransStatus --- Get BlockTransaction Status

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_BlockDevTransStatus (file *filehandle);

Description

RS_BlockDevTransStatus () appends a “Get Block Transaction Status” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_BlockDevTransStatus (usb_stream);

}

RS_StopBlockDevTrans --- Stop A Block Transaction

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD R2_ StopBlockDevTrans (file *filehandle);

Description

RS_StopBlockDevTrans() appends a “Stop Block transaction” command to the rootscript file specified by “filehandle.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_StopBlockDevTrans(usb_stream);

}

RS_Program--- Program Script File

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Program(file *filehandle);

Description

RS_Program appends a “Program” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_Program(usb_stream);

}

RS_Run--- Run Script File

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Run(file *filehandle);

Description

RS_Run() appends a “Run” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

ScriptBytes += RS_Run(usb_stream);

}

RS_Get_DLL_Version--- Get Version

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Get_DLL_Version(void);

Description

RS_Get_DLL_Version() returns the version of the DLL.

Returns

16-bit version number in hexadecimal form (i.e., 0x0100 = version 1.00).

Example:

{

UWORD Version = RS_Get_DLL_Version();

if (Version < 0x100)

{

printf(“DLL out of date\r\n”);

}

//..

//..

//..

}

RS_Message --- Send Message

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Message(file *filehandle, UBYTE *message,

 UBYTE MsgLen);

Description

RS_Message()appends a rootscript “RS_Message” command to the rootscript file specified by “filehandle”.

Filehandle:

handle of rootscript file

Message:

pointer to byte string

MsgLen:

length of message, in bytes

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

UBYTE Message[] = {0,1,2,3,4,5};

//send message.

ScriptBytes += RS_Message(usb_stream, Message,sizeof(Message));

//..

//..

}

RS_Response --- Set Response Mode

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Response(file *filehandle, UBYTE Mode);

Description

RS_Response()appends a rootscript “RS_Response” command to the rootscript file specified by “filehandle”.

Filehandle:

handle of rootscript file

Mode:

mode. Can be one of:

FULL_RESPONSE (0)

QUIET (1)

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

//be quiet!

ScriptBytes += RS_Response(usb_stream,QUIET);

//..

//..

}

4 Rootscript Flow Control Functions

The following rootscript functions maintain a one-to-one correspondence with rootscript flow control commands described in the Root-1 Interface Specification.

Recall from the Root-1 Interface Specification that as rootscript commands are loaded into Root-1, they are assigned 16-bit indexes starting at index 0 and incrementing by 1 for each command. Thus each command in the rootscript has a unique index associated with it. Program flow is controlled by allowing the script to transfer control to a new execution index.

RS_CurIdx--- Get Current Index

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_CurrIdx(void);

Description

RS_CurrIdx() returns the current rootscript index. This call is used in conjunction with other flow-control functions to create loops within a rootscript.

Note: the program index is automatically reset to 0 when a RS_Program() command is called.

Returns

16-bit rootscript index

Example:

{

FILE *usb_stream = RS_Fopen(“test.rs”);

UWORD ScriptBytes = RS_Program(usb_stream);

UWORD Index = RS_CurIdx();

//Index is 0 now.

//Subsequent command (RS_Response) will be assigned

//this index

ScriptBytes += RS_Response(usb_stream,QUIET);

Index = RS_CurIdx();

//Index is 1 now. Subsequent command

//(RS_Power) will be assigned this index.

ScriptBytes += RS_Power(usb_stream,0);

Index = RS_CurIdx();

//Index is 2 now

//..

//..

}

RS_Goto--- Goto

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Goto(file *filehandle, UWORD index);

Description

RS_Goto() appends a rootscript “goto” command to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

UWORD Index;

//..

//..

ScriptBytes += RS_Power(usb_stream,POWER_ON);

//get the current index. This is the index

//which the NEXT rootscript command (RS_USB_Reset)

//will be assigned.

Index = RS_CurIdx();

ScriptBytes += RS_USB_Reset(usb_stream);

ScriptBytes += RS_Goto(usb_stream,Index);

//note infinite loop created above! It will repeatedly

//reset the device.

}

RS_Call, RS_Return --- Function Call and Return

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Call(file *filehandle, UWORD index);

UWORD RS_Return(file *filehandle);

Description

RS_Call() and RS_Return append rootscript “call” and “return” commands, respectively, to the rootscript file specified by “filehandle”.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

//following fragment creates a rootscript

//that has 2 subroutines and calls them.

//..

//..

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

UWORD PowerOnSubIndex,ResetSubIndex;

//first subroutine applies power...

PowerOnSubIndex = RS_CurIdx();

ScriptBytes += RS_Power(usb_stream,POWER_ON);

ScriptBytes += RS_Return(usb_stream);

//second subroutine resets device..

ResetSubIndex = RS_CurIdx();

ScriptBytes += RS_USB_Reset(usb_stream);

ScriptBytes += RS_Return(usb_stream);

//more subroutines here...

//..

//..

//subroutine calls....

ScriptBytes += RS_Call(usb_stream,PowerOnSubIndex);

ScriptBytes += RS_Call(usb_stream,ResetSubIndex);

}

RS_Timer --- Set Timer

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Timer(file *filehandle, ULONG Count);

Description

RS_Timer() appends a “RS_Timer” command to the rootscript file specified by “filehandle”.

Count:

initial count, in 1-msec increments, to initialize timer

Returns

Total bytes added to file pointed to by filehandle

Example:

{

FILE *usb_stream;

UWORD ScriptBytes;

//initialize timer...

ScriptBytes += RS_Timer(usb_stream,100);

}

RS_If --- If

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_If(file *filehandle, UBYTE Cond, UWORD index);

Description

RS_If() appends a rootscript “RS_If” command to the rootscript file specified by “filehandle”.

Cond:
parameter to be checked for assertion.

STS_Success

// transaction successful

STS_ACK

// transaction resulted in ACK

STS_NAK

// transaction resulted in NAK

STS_STALL

// “ “ “ STALL

STS_IGNORE

// “ “ “ IGNORE

STS_DCRCErr

// received incorrect CRC

STS_DTogErr

// received incorrect data toggle pid

STS_SyncErr

// received incorrect sync byte

STS_Babble

// device babble

STS_PIDErr

// incorrect pid format

STS_ShPktErr

// packet too short

STS_ConfigErr

//

Index:
16-bit index to which control will be conditionally returned.

Returns

Total bytes added to file pointed to by filehandle

Example:

{

//following fragment loops until device stops NAKing

//....

FILE *usb_stream;

UWORD ScriptBytes;

UWORD i;

//..

//..

//get value of index

Index = RS_CurIdx();

i = RS_CurIdx();

ScriptBytes += RS_DevTransIn(usb_stream,

address,0,IN_PID,FULLSPEED);
//IN for status

ScriptBytes += RS_If(usb_stream,STS_NAK,i);

//script execution will flow here when device stops naking

//..

//..

}

RS_Cond, RS_Check --- Check Conditionals and Branch

Synopsis

#include “stddefs.h”

#include “rootscript.h”

UWORD RS_Cond(file *filehandle, UBYTE Cond, UWORD index, UBYTE state);

UWORD RS_Check(file *filehandle, UBYTE init);

Description

RS_Cond() and RS_Check() append rootscript “RS_Cond” and “RS_Check” commands, respectively, to the rootscript file specified by “filehandle”. These commands are used together to create conditions upon which the script will pend.

Cond:
parameter to be checked for assertion. Can be one of:

CHK_Connect

//device connect

CHK_Disconnect
//device disconnect

CHK_Resume

//device resume

CHK_TrigIn0

//Trigger 0 asserted

CHK_TrigIn1

//Trigger 1 asserted

CHK_Timeout

//timer timeout

CHK_BlockDone
//Block command completed

Index:
16-bit index to which control will be conditionally returned.

State: 0 (disable) or 1(enable) the condition

Init: Bit-field indicating whether to clear latched conditions

prior to entering RS_Check.
Can be an “or” of only the conditions which are latchable:

(1 << CHK_TrigIn0)
//clear trigger 0

(1 << CHK_TrigIn1)
//clear trigger 1

Returns

Total bytes added to file pointed to by filehandle

Example:

{

//following fragment delays for 10 ms before proceeding...

//proceeding....

FILE *usb_stream;

UWORD ScriptBytes;

//..

//..

UWORD Index;

//set timer for 10 ms

ScriptBytes += RS_Timer(usb_stream,10);

//..

//..

//get value of index

Index = RS_CurIdx();

//note “Index+2” argument passed to RS_Cond

//this will cause program flow to jump 2 script commands

//ahead – after the RS_Cond and RS_Check -

//when device connects.

//enable timeout condition and index

ScriptBytes += RS_Cond(usb_stream,

CHK_Timeout,((UWORD)(Index+2)),Enabled);

//issue RS_Check. This will cause a pend until the timer

//times out, after which program flow will continue to the

//script index after this one....

ScriptBytes += RS_Check(usb_stream,0);

//script execution resumes here after timeout....

//..

//..

//following fragment pends on either trigger before

//proceeding....

//get value of index

Index = RS_CurIdx();

//note “Index+3” argument passed to RS_Cond.

//this will cause program flow to jump 3 script commands

//ahead – after the 2 RS_Conds and 1 RS_Check -

//enable trigger0 condition and index

ScriptBytes += RS_Cond(usb_stream,CHK_TrigIn0,((UWORD)(Index+3)),ENABLED);

//enable trigger1 condition and index

ScriptBytes += RS_Cond(usb_stream,CHK_TrigIn1,((UWORD)(Index+3)),ENABLED);

//issue RS_Check. This will cause a pend until

//either trigger fires. Note that the triggers are cleared

//prior to pending.

ScriptBytes += RS_Check(usb_stream,(1 << CHK_TrigIn0)

 | (1 << CHK_TrigIn1));

//script execution resumes here after either trigger....

//..

//..

}

5 Another Example

An example rootscript demonstration is included in the rootscript distribution. Test.dsw is an MS Visual C/C++ compatible project, which includes all sources and makefiles to build a simple rootscript that:

Enables USB power;

Resets an attached device and allows it to enumerate;

Sends 1024 bytes of data to a bulk endpoint at 8 packets per frame,

64 bytes per frame.

Invoke the resulting executable test.exe with a single argument – the name of the rootscript file – as in “test <example.rs>”. This produces the file “example.rs”. Using TapRoot, you can download this script to Root-1 and use it to verify the operation of any device capable of sinking bulk data at the example rate and packet size.

6 Other Resources

Refer to the document entitled Developing PC-Based Host Applications For Root-2 for an example of how to write a custom application that downloads rootscripts – as opposed to using TapRoot.

